Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Otol Neurotol ; 45(4): e271-e280, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346807

RESUMO

OBJECTIVES: The aim of this study is to improve our understanding of the mechanics involved in the insertion of lateral wall cochlear implant electrode arrays. DESIGN: A series of 30 insertion experiments were conducted by three experienced surgeons. The experiments were carried out in a previously validated artificial temporal bone model according to established soft surgery guidelines. The use of an in vitro setup enabled us to comprehensively evaluate relevant parameters, such as insertion force, intracochlear pressure, and exact electrode array position in a controlled and repeatable environment. RESULTS: Our findings reveal that strong intracochlear pressure transients are more frequently caused during the second half of the insertion, and that regrasping the electrode array is a significant factor in this phenomenon. For choosing an optimal insertion speed, we show that it is crucial to balance slow movement to limit intracochlear stress with short duration to limit tremor-induced pressure spikes, challenging the common assumption that a slower insertion is inherently better. Furthermore, we found that intracochlear stress is affected by the order of execution of postinsertion steps, namely sealing the round window and posterior tympanotomy with autologous tissue and routing of the excess cable into the mastoid cavity. Finally, surgeons' subjective estimates of physical parameters such as speed, smoothness, and resistance did not correlate with objectively assessed measures, highlighting that a thorough understanding of intracochlear mechanics is essential for an atraumatic implantation. CONCLUSION: The results presented in this article allow us to formulate evidence-based surgical recommendations that may ultimately help to improve surgical outcome and hearing preservation in cochlear implant patients.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Cóclea/cirurgia , Janela da Cóclea/cirurgia , Osso Temporal/cirurgia , Eletrodos Implantados
2.
Commun Biol ; 7(1): 157, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326549

RESUMO

The characterization of the vibrations of the middle ear ossicles during sound transmission is a focal point in clinical research. However, the small size of the structures, their micrometer-scale movement, and the deep-seated position of the middle ear within the temporal bone make these types of measurements extremely challenging. In this work, dynamic synchrotron-based X-ray phase-contrast microtomography is used on acoustically stimulated intact human ears, allowing for the three-dimensional visualization of entire human eardrums and ossicular chains in motion. A post-gating algorithm is used to temporally resolve the fast micromotions at 128 Hz, coupled with a high-throughput pipeline to process the large tomographic datasets. Seven ex-vivo fresh-frozen human temporal bones in healthy conditions are studied, and the rigid body motions of the ossicles are quantitatively delineated. Clinically relevant regions of the ossicular chain are tracked in 3D, and the amplitudes of their displacement are computed for two acoustic stimuli.


Assuntos
Imageamento Tridimensional , Síncrotrons , Humanos , Raios X , Orelha Média/diagnóstico por imagem , Ossículos da Orelha/diagnóstico por imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083665

RESUMO

Our study aims to provide basic insights on the impact of the spiral shape of the cochlea, i.e., of geometric torsion and curvature, on wall pressure and wall shear stress. We employed computational fluid dynamics in square duct models with curvature and torsion similar to those found in human cochleae. The results include wall pressures and wall shear stresses within the ducts under oscillating axial flow. Our findings indicate that the helical shape generates higher transverse wall shear stresses compared to exclusively curved or twisted ducts. The wall pressures and transverse wall shear stresses we found rise to amounts that may be physiologically relevant in the cochlea.Clinical relevance- The role of the spiral shape of the cochlea in hearing physiology remains, for a large part, elusive. For a better apprehension of hearing and its disorders, it is important to investigate the influence of geometric properties on biofluids motion and emerging phenomena in the cochlea.


Assuntos
Cóclea , Audição , Humanos , Movimento (Física)
4.
Front Surg ; 10: 1293616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098476

RESUMO

Introduction: An optimal placement of bone conduction implants can provide more efficient mechanical transmission to the cochlea if placed in regions with greater bone column density. The aim of this study was to test this hypothesis and to determine the clinical potential of preoperative bone column density assessment for optimal implant placement. Methods: Five complete cadaver heads were scanned with quantitative computed tomography imaging to create topographic maps of bone density based on the column density index (CODI). Laser Doppler vibrometry was used to measure cochlear promontory acceleration under bone conduction stimulation in different locations on the temporal bone, using a bone-anchored hearing aid transducer at frequencies ranging from 355 Hz to 10 kHz. Results: We found a statistically significant association between CODI levels and the accelerance of the cochlear promontory throughout the frequency spectrum, with an average increase of 0.6 dB per unit of CODI. The distance between the transducer and the cochlear promontory had no statistically significant effect on the overall spectrum. Discussion: We highlight the importance of bone column density in relation to the mechanical transmission efficiency of bone conduction implants. It may be worthwhile to consider column density in preoperative planning in clinical practice.

5.
Front Neurol ; 14: 1181539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621854

RESUMO

Introduction: Intracochlear electrocochleography (ECochG) is increasingly being used to measure residual inner ear function in cochlear implant (CI) recipients. ECochG signals reflect the state of the inner ear and can be measured during implantation and post-operatively. The aim of our study was to apply an objective deep learning (DL)-based algorithm to assess the reproducibility of longitudinally recorded ECochG signals, compare them with audiometric hearing thresholds, and identify signal patterns and tonotopic behavior. Methods: We used a previously published objective DL-based algorithm to evaluate post-operative intracochlear ECochG signals collected from 21 ears. The same measurement protocol was repeated three times over 3 months. Additionally, we measured the pure-tone thresholds and subjective loudness estimates for correlation with the objectively detected ECochG signals. Recordings were made on at least four electrodes at three intensity levels. We extracted the electrode positions from computed tomography (CT) scans and used this information to evaluate the tonotopic characteristics of the ECochG responses. Results: The objectively detected ECochG signals exhibited substantial repeatability over a 3-month period (bias-adjusted kappa, 0.68; accuracy 83.8%). Additionally, we observed a moderate-to-strong dependence of the ECochG thresholds on audiometric and subjective hearing levels. Using radiographically determined tonotopic measurement positions, we observed a tendency for tonotopic allocation with a large variance. Furthermore, maximum ECochG amplitudes exhibited a substantial basal shift. Regarding maximal amplitude patterns, most subjects exhibited a flat pattern with amplitudes evenly distributed over the electrode carrier. At higher stimulation frequencies, we observed a shift in the maximum amplitudes toward the basal turn of the cochlea. Conclusions: We successfully implemented an objective DL-based algorithm for evaluating post-operative intracochlear ECochG recordings. We can only evaluate and compare ECochG recordings systematically and independently from experts with an objective analysis. Our results help to identify signal patterns and create a better understanding of the inner ear function with the electrode in place. In the next step, the algorithm can be applied to intra-operative measurements.

6.
Trends Hear ; 27: 23312165231191382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501653

RESUMO

Matrix sentence tests in noise can be challenging to the listener and time-consuming. A trade-off should be found between testing time, listener's comfort and the precision of the results. Here, a novel test procedure based on an updated maximum likelihood method was developed and implemented in a German matrix sentence test. It determines the parameters of the psychometric function (threshold, slope, and lapse-rate) without constantly challenging the listener at the intelligibility threshold. A so-called "credible interval" was used as a mid-run estimate of reliability and can be used as a termination criterion for the test. The procedure was evaluated and compared to a STAIRCASE procedure in a study with 20 cochlear implant patients and 20 normal hearing participants. The proposed procedure offers comparable accuracy and reliability to the reference method, but with a lower listening effort, as rated by the listeners (-1.8 points on a 10-point scale). Test duration can be reduced by 1.3 min on average when a credible interval of 2 dB is used as the termination criterion instead of testing 30 sentences. Particularly, normal hearing listeners and well performing, cochlear implant users can benefit from shorter test duration. Although the novel procedure was developed for a German test, it can easily be applied to tests in any other language.


Assuntos
Percepção da Fala , Fala , Humanos , Reprodutibilidade dos Testes , Teorema de Bayes , Razão Sinal-Ruído , Assistência Centrada no Paciente , Inteligibilidade da Fala
7.
Front Neurol ; 14: 1183116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288065

RESUMO

Introduction and objectives: Maintaining the structural integrity of the cochlea and preserving residual hearing is crucial for patients, especially for those for whom electric acoustic stimulation is intended. Impedances could reflect trauma due to electrode array insertion and therefore could serve as a biomarker for residual hearing. The aim of this study is to evaluate the association between residual hearing and estimated impedance subcomponents in a known collective from an exploratory study. Methods: A total of 42 patients with lateral wall electrode arrays from the same manufacturer were included in the study. For each patient, we used data from audiological measurements to compute residual hearing, impedance telemetry recordings to estimate near and far-field impedances using an approximation model, and computed tomography scans to extract anatomical information about the cochlea. We assessed the association between residual hearing and impedance subcomponent data using linear mixed-effects models. Results: The progression of impedance subcomponents showed that far-field impedance was stable over time compared to near-field impedance. Low-frequency residual hearing demonstrated the progressive nature of hearing loss, with 48% of patients showing full or partial hearing preservation after 6 months of follow-up. Analysis revealed a statistically significant negative effect of near-field impedance on residual hearing (-3.81 dB HL per kΩ; p < 0.001). No significant effect of far-field impedance was found. Conclusion: Our findings suggest that near-field impedance offers higher specificity for residual hearing monitoring, while far-field impedance was not significantly associated with residual hearing. These results highlight the potential of impedance subcomponents as objective biomarkers for outcome monitoring in cochlear implantation.

8.
Ear Hear ; 44(6): 1379-1388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37157125

RESUMO

OBJECTIVES: Reliable determination of cochlear implant electrode positions shows promise for clinical applications, including anatomy-based fitting of audio processors or monitoring of electrode migration during follow-up. Currently, electrode positioning is measured using radiography. The primary objective of this study is to extend and validate an impedance-based method for estimating electrode insertion depths, which could serve as a radiation-free and cost-effective alternative to radiography. The secondary objective is to evaluate the reliability of the estimation method in the postoperative follow-up over several months. DESIGN: The ground truth insertion depths were measured from postoperative computed tomography scans obtained from the records of 56 cases with an identical lateral wall electrode array. For each of these cases, impedance telemetry records were retrieved starting from the day of implantation up to a maximum observation period of 60 mo. Based on these recordings, the linear and angular electrode insertion depths were estimated using a phenomenological model. The estimates obtained were compared with the ground truth values to calculate the accuracy of the model. RESULTS: Analysis of the long-term recordings using a linear mixed-effects model showed that postoperative tissue resistances remained stable throughout the follow-up period, except for the two most basal electrodes, which increased significantly over time (electrode 11: ~10 Ω/year, electrode 12: ~30 Ω/year). Inferred phenomenological models from early and late impedance telemetry recordings were not different. The insertion depth of all electrodes was estimated with an absolute error of 0.9 mm ± 0.6 mm or 22° ± 18° angle (mean ± SD). CONCLUSIONS: Insertion depth estimations of the model were reliable over time when comparing two postoperative computed tomography scans of the same ear. Our results confirm that the impedance-based position estimation method can be applied to postoperative impedance telemetry recordings. Future work needs to address extracochlear electrode detection to increase the performance of the method.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Impedância Elétrica , Reprodutibilidade dos Testes , Cóclea/cirurgia , Implante Coclear/métodos
9.
IEEE Trans Biomed Eng ; 70(11): 3137-3146, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37195836

RESUMO

Electrocochleography (ECochG) is increasingly used to monitor the inner ear function of cochlear implant (CI) patients during surgery. Current ECochG-based trauma detection shows low sensitivity and specificity and depends on visual analysis by experts. Trauma detection could be improved by including electric impedance data recorded simultaneously with the ECochG. However, combined recordings are rarely used because the impedance measurements produce artifacts in the ECochG. In this study, we propose a framework for automated real-time analysis of intraoperative ECochG signals using Autonomous Linear State-Space Models (ALSSMs). We developed ALSSM based algorithms for noise reduction, artifact removal, and feature extraction in ECochG. Feature extraction includes local amplitude and phase estimations and a confidence metric over the presence of a physiological response in a recording. We tested the algorithms in a controlled sensitivity analysis using simulations and validated them with real patient data recorded during surgeries. The results from simulation data show that the ALSSM method provides improved accuracy in the amplitude estimation together with a more robust confidence metric of ECochG signals compared to the state-of-the-art methods based on the fast Fourier transform (FFT). Tests with patient data showed promising clinical applicability and consistency with the findings from the simulations. We showed that ALSSMs are a valid tool for real-time analysis of ECochG recordings. Removal of artifacts using ALSSMs enables simultaneous recording of ECochG and impedance data. The proposed feature extraction method provides the means to automate the assessment of ECochG. Further validation of the algorithms in clinical data is needed.

10.
J Vis Exp ; (193)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939227

RESUMO

Strong magnetic fields induce dizziness, vertigo, and nystagmus due to Lorentz forces acting on the cupula in the semi-circular canals, an effect called magnetic vestibular stimulation (MVS). In this article, we present an experimental setup in a 7T MRT scanner (MRI scanner) that allows the investigation of the influence of strong magnetic fields on nystagmus as well as perceptual and cognitive responses. The strength of MVS is manipulated by altering the head positions of the participants. The orientation of the participants' semicircular canals with respect to the static magnetic field is assessed by combining a 3D magnetometer and 3D constructive interference in steady-state (3D-CISS) images. This approach allows to account for intra- and inter-individual differences in participants' responses to MVS. In the future, MVS can be useful for clinical research, for example, in the investigation of compensatory processes in vestibular disorders. Furthermore, it could foster insights into the interplay between vestibular information and cognitive processes in terms of spatial cognition and the emergence of self-motion percepts under conflicting sensory information. In fMRI studies, MVS can elicit a possible confounding effect, especially in tasks influenced by vestibular information or in studies comparing vestibular patients with healthy controls.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/diagnóstico por imagem , Vestíbulo do Labirinto/fisiologia , Campos Magnéticos , Canais Semicirculares/diagnóstico por imagem , Canais Semicirculares/fisiologia , Vertigem , Cognição
11.
Sci Data ; 10(1): 157, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949075

RESUMO

Electrocochleography (ECochG) measures electrophysiological inner ear potentials in response to acoustic stimulation. These potentials reflect the state of the inner ear and provide important information about its residual function. For cochlear implant (CI) recipients, we can measure ECochG signals directly within the cochlea using the implant electrode. We are able to perform these recordings during and at any point after implantation. However, the analysis and interpretation of ECochG signals are not trivial. To assist the scientific community, we provide our intracochlear ECochG data set, which consists of 4,924 signals recorded from 46 ears with a cochlear implant. We collected data either immediately after electrode insertion or postoperatively in subjects with residual acoustic hearing. This data descriptor aims to provide the research community access to our comprehensive electrophysiological data set and algorithms. It includes all steps from raw data acquisition to signal processing and objective analysis using Deep Learning. In addition, we collected subject demographic data, hearing thresholds, subjective loudness levels, impedance telemetry, radiographic findings, and classification of ECochG signals.


Assuntos
Audiometria de Resposta Evocada , Cóclea , Implantes Cocleares , Humanos , Cóclea/fisiologia , Implante Coclear , Aprendizado Profundo
12.
Surg Radiol Anat ; 45(3): 315-319, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36732380

RESUMO

PURPOSE: High-riding jugular bulbs (JBs) among other anatomical variations can limit surgical access during lateral skull base surgery or middle ear surgery and must be carefully assessed preoperatively. We reconstruct 3D surface models to evaluate recent JB classification systems and assess the variability in the JB and surrounding structures. METHODS: 3D surface models were reconstructed from 46 temporal bones from computed tomography scans. Two independent raters visually assessed the height of the JB in the 3D models. Distances between the round window and the JB dome were measured to evaluate the spacing of this area. Additional distances between landmarks on surrounding structures were measured and statistically analyzed to describe the anatomical variability between and within subjects. RESULTS: The visual classification revealed that 30% of the specimens had no JB, 63% a low JB, and 7% a high-riding JB. The measured mean distance from the round window to the jugular bulb ranges between 3.22 ± 0.97 mm and 10.34 ± 1.41 mm. The distance measurement (error rate 5%) was more accurate than the visual classification (error rate 15%). The variability of the JB was higher than for the surrounding structures. No systematic laterality was found for any structure. CONCLUSION: Qualitative analysis in 3D models can contribute to a better spatial orientation in the lateral skull base and, thereby, have important implications during planning of middle ear and lateral skull base surgery.


Assuntos
Veias Jugulares , Procedimentos Neurocirúrgicos , Procedimentos Cirúrgicos Otológicos , Osso Temporal , Humanos , Orelha Média/cirurgia , Veias Jugulares/anatomia & histologia , Veias Jugulares/diagnóstico por imagem , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia , Osso Temporal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional , Procedimentos Cirúrgicos Otológicos/métodos , Procedimentos Neurocirúrgicos/métodos , Janela da Cóclea/diagnóstico por imagem , Pesos e Medidas Corporais
13.
Eur Arch Otorhinolaryngol ; 280(8): 3585-3591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36692617

RESUMO

PURPOSE: The SAMBA 2 BB audio processor for the BONEBRIDGE bone conduction implant features a new automatic listening environment detection to focus on target speech and to reduce interfering speech and background noises. The aim of this study was to evaluate the audiological benefit of the SAMBA 2 BB (AP2) and to compare it with its predecessor SAMBA BB (AP1). METHODS: Prospective within-subject comparison study. We compared the aided sound field hearing thresholds, speech understanding in quiet (Freiburg monosyllables), and speech understanding in noise (Oldenburg sentence test) with the AP1 and AP2. Each audio processor was worn for 2 weeks before assessment and seven users with single-sided sensorineural deafness (SSD) participated in the study. For speech understanding in noise, two complex noise scenarios with multiple noise sources including single talker interfering speech were used. The first scenario included speech presented from the front (S0NMIX), while in the second scenario speech was presented from the side of the implanted ear (SIPSINMIX). In addition, subjective evaluation using the SSQ12, APSQ, and the BBSS questionnaires was performed. RESULTS: We found improved speech understanding in quiet with the AP2 compared to the AP1 aided condition (on average + 17%, p = 0.007). In both noise scenarios, the AP2 lead to improved speech reception thresholds by 1.2 dB (S0NMIX, p = 0.032) and 2.1 dB (SIPSINMIX, p = 0.048) compared to the AP1. The questionnaires revealed no statistically significant differences, except an improved APSQ usability score with the AP2. CONCLUSION: Clinicians can expect that patients with SSD will benefit from the SAMBA 2 BB by improved speech understanding in both quiet and in complex noise scenarios, when compared to the older SAMBA BB.


Assuntos
Implantes Cocleares , Surdez , Auxiliares de Audição , Perda Auditiva Neurossensorial , Percepção da Fala , Humanos , Condução Óssea , Estudos Prospectivos , Audição , Perda Auditiva Neurossensorial/cirurgia , Surdez/cirurgia
14.
Sleep Breath ; 27(1): 229-237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35366204

RESUMO

PURPOSE: The objective was to analyze the clinical implications of manual scoring of sleep studies using peripheral arterial tonometry (PAT) and to compare the manual and automated scoring algorithms. METHODS: Patients with suspected sleep-disordered breathing underwent sleep studies using PAT. The recordings were analyzed using a validated automated computer-based scoring and a novel manual scoring algorithm. The two methods were compared regarding sleep stages and respiratory events. RESULTS: Recordings of 130 patients were compared. The sleep stages and time were not significantly different between the scoring methods. PAT-derived apnea-hypopnea index (pAHI) was on average 8.4 events/h lower in the manually scored data (27.5±17.4/h vs.19.1±15.2/h, p<0.001). The OSA severity classification decreased in 66 (51%) of 130 recordings. A similar effect was found for the PAT-derived respiratory disturbance index with a reduction from 31.2±16.5/h to 21.7±14.4/h (p<0.001), for automated and manual scoring, respectively. A lower pAHI for manual scoring was found in all body positions and sleep stages and was independent of gender and body mass index. The absolute difference of pAHI increased with sleep apnea severity, while the relative difference decreased. Pearson's correlation coefficient between pAHI and oxygen desaturation index (ODI) significantly improved from 0.89 to 0.94 with manual scoring (p<0.001). CONCLUSIONS: Manual scoring results in a lower pAHI while improving the correlation to ODI. With manual scoring, the OSA category decreases in a clinically relevant proportion of patients. Sleep stages and time do not change significantly with manual scoring. In the authors' opinion, manual oversight is recommended if clinical decisions are likely to change.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Artérias , Algoritmos , Índice de Massa Corporal , Apneia Obstrutiva do Sono/diagnóstico
15.
IEEE Trans Biomed Eng ; 70(3): 860-866, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063524

RESUMO

OBJECTIVE: In conventional cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool that allows to optimize the insertion trajectory beyond anatomical constraints and stabilizes the electrode array in manual implantation. A novel sleeve-based design allows the instrument to be compliant and potentially protective to intracochlear structures, while a tear-open mechanism allows it to be removed after insertion by simply retracting the tool. METHODS: Conventional and tool-guided manual insertions were performed by expert cochlear implant surgeons in an analog temporal bone model that allows to simultaneously record intracochlear pressure, insertion forces and electrode array deformation. RESULTS: Comparison between conventional and tool-guided insertions demonstrate a substantial reduction of maximum insertion forces, force variations, transverse intracochlear electrode array movement, and pressure transients. CONCLUSION: The presented tool can be utilized in manual cochlear implantation and significantly improves key metrics associated with intracochlear trauma. SIGNIFICANCE: The instrument may ultimately help improve hearing outcomes in cochlear implantation. The versatile design may be used in both manual cochlear implantation and motorized and robotic insertion, as well as image-guided surgery.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Cóclea/cirurgia , Osso Temporal/cirurgia , Fenômenos Mecânicos
16.
Otol Neurotol Open ; 3(4): e045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38516541

RESUMO

Objective: The suitable electrode array choice is broadly discussed in cochlear implantation surgery. Whether to use a shorter electrode length under the aim of structure preservation versus choosing a longer array to achieve a greater cochlear coverage is a matter of debate. The aim of this review is to identify the impact of the insertion depth of a cochlear implant (CI) electrode array on CI users' speech perception outcomes. Databases Reviewed: PubMed was searched for English-language articles that were published in a peer-reviewed journal from 1997 to 2022. Methods: A systematic electronic search of the literature was carried out using PubMed to find relevant literature on the impact of insertion depth on speech perception. The review was conducted according to the preferred reporting items for systematic reviews and meta-analyses guidelines of reporting. Studies in both, children and adults with pre- or postlingual hearing loss, implanted with a CI were included in this study. Articles written in languages other than English, literature reviews, meta-analyses, animal studies, histopathological studies, or studies pertaining exclusively to imaging modalities without reporting correlations between insertion depth and speech outcomes were excluded. The risk of bias was determined using the "Risk of Bias in Nonrandomized Studies of Interventions" tool. Articles were extracted by 2 authors independently using predefined search terms. The titles and abstracts were screened manually to identify studies that potentially meet the inclusion criteria. The extracted information included: the study population, type of hearing loss, outcomes reported, devices used, speech perception outcomes, insertion depth (linear insertion depth and/or the angular insertion depth), and correlation between insertion depth and the speech perception outcomes. Results: A total of 215 relevant studies were assessed for eligibility. Twenty-three studies met the inclusion criteria and were analyzed further. Seven studies found no significant correlation between insertion depth and speech perception outcomes. Fifteen found either a significant positive correlation or a positive effect between insertion depth and speech perception. Only 1 study found a significant negative correlation between insertion depth and speech perception outcomes. Conclusion: Although most studies reported a positive effect of insertion depth on speech perception outcomes, one-third of the identified studies reported no correlation. Thus, the insertion depth must be considered as a contributing factor to speech perception rather than as a major decisive criterion. Registration: This review has been registered in PROSPERO, the international prospective register of systematic reviews (CRD42021257547), available at https://www.crd.york.ac.uk/PROSPERO/.

17.
World Neurosurg ; 167: e1376-e1386, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115567

RESUMO

OBJECTIVE: State-of-the-art, minimally invasive endoscopic transcanal surgery of the internal auditory canal (IAC) sacrifices the cochlea with complete hearing loss. With a combination of the transcanal infracochlear and transmastoid retrolabyrinthine approaches, we aim to preserve hearing and enable minimally invasive surgical treatment of vestibular schwannoma. In this study, we investigate the anatomical indications and the feasibility of both approaches in dissections, in human whole head specimens. METHODS: We operated whole head anatomical specimens with a four-handed technique, using the retrolabyrinthine approach as the main surgical corridor and the infracochlear approach for endoscopic visualization. We tested 4 different powered surgical systems. We collected intraoperative data on the size of the access windows, the surgical freedom, and the exposed area of the IAC. Finally, we evaluated the outcome in postoperative computed tomography scans. RESULTS: Six out of 14 sides were anatomically suitable and qualified for the surgery based on preoperative computed tomography. In all attempted sides, the IAC could be reached and opened, leaving the ossicular chain and the labyrinth intact. 51%-75% of the length and 22%-40% of the circumference of the IAC could be exposed. All tested instruments were beneficial at different stages of the surgery. The four-handed technique enabled good maneuverability of the instruments. CONCLUSIONS: The combined multiportal approach to the IAC is feasible with a good surgical exposure and full anatomical preservation of hearing. State-of-the-art surgical instruments in specimens with suitable anatomy are sufficient to perform this approach.


Assuntos
Orelha Interna , Neuroma Acústico , Humanos , Estudos de Viabilidade , Orelha Interna/diagnóstico por imagem , Orelha Interna/cirurgia , Neuroma Acústico/cirurgia , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Audição
18.
Front Neurol ; 13: 943816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105773

RESUMO

Introduction: Electrocochleography (ECochG) measures inner ear potentials in response to acoustic stimulation. In patients with cochlear implant (CI), the technique is increasingly used to monitor residual inner ear function. So far, when analyzing ECochG potentials, the visual assessment has been the gold standard. However, visual assessment requires a high level of experience to interpret the signals. Furthermore, expert-dependent assessment leads to inconsistency and a lack of reproducibility. The aim of this study was to automate and objectify the analysis of cochlear microphonic (CM) signals in ECochG recordings. Methods: Prospective cohort study including 41 implanted ears with residual hearing. We measured ECochG potentials at four different electrodes and only at stable electrode positions (after full insertion or postoperatively). When stimulating acoustically, depending on the individual residual hearing, we used three different intensity levels of pure tones (i.e., supra-, near-, and sub-threshold stimulation; 250-2,000 Hz). Our aim was to obtain ECochG potentials with differing SNRs. To objectify the detection of CM signals, we compared three different methods: correlation analysis, Hotelling's T2 test, and deep learning. We benchmarked these methods against the visual analysis of three ECochG experts. Results: For the visual analysis of ECochG recordings, the Fleiss' kappa value demonstrated a substantial to almost perfect agreement among the three examiners. We used the labels as ground truth to train our objectification methods. Thereby, the deep learning algorithm performed best (area under curve = 0.97, accuracy = 0.92), closely followed by Hotelling's T2 test. The correlation method slightly underperformed due to its susceptibility to noise interference. Conclusions: Objectification of ECochG signals is possible with the presented methods. Deep learning and Hotelling's T2 methods achieved excellent discrimination performance. Objective automatic analysis of CM signals enables standardized, fast, accurate, and examiner-independent evaluation of ECochG measurements.

19.
Front Neurol ; 13: 919777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158956

RESUMO

Objective: Measuring the Vestibular-Ocular-Reflex (VOR) gains with the video head impulse test (vHIT) allows for accurate discrimination between peripheral and central causes of acute vestibular syndrome (AVS). In this study, we sought to investigate whether the accuracy of artificial intelligence (AI) based vestibular stroke classification applied in unprocessed vHIT data is comparable to VOR gain classification. Methods: We performed a prospective study from July 2015 until April 2020 on all patients presenting at the emergency department (ED) with signs of an AVS. The patients underwent vHIT followed by a delayed MRI, which served as a gold standard for stroke confirmation. The MRI ground truth labels were then applied to train a recurrent neural network (long short-term memory architecture) that used eye- and head velocity time series extracted from the vHIT examinations. Results: We assessed 57 AVS patients, 39 acute unilateral vestibulopathy patients (AUVP) and 18 stroke patients. The overall sensitivity, specificity and accuracy for detecting stroke with a VOR gain cut-off of 0.57 was 88.8, 92.3, and 91.2%, respectively. The trained neural network was able to classify strokes with a sensitivity of 87.7%, a specificity of 88.4%, and an accuracy of 87.9% based on the unprocessed vHIT data. The accuracy of these two methods was not significantly different (p = 0.09). Conclusion: AI can accurately diagnose a vestibular stroke by using unprocessed vHIT time series. The quantification of eye- and head movements with the use of machine learning and AI can serve in the future for an automated diagnosis in ED patients with acute dizziness. The application of different neural network architectures can potentially further improve performance and enable direct inference from raw video recordings.

20.
J Vis Exp ; (184)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35786698

RESUMO

Robot-assisted systems offer great potential for gentler and more precise cochlear implantation. In this article, we provide a comprehensive overview of the clinical workflow for robotic cochlear implantation using a robotic system specifically developed for a minimally invasive, direct cochlear access. The clinical workflow involves experts from various disciplines and requires training to ensure a smooth and safe procedure. The protocol briefly summarizes the history of robotic cochlear implantation. The clinical sequence is explained in detail, beginning with the assessment of patient eligibility and covering surgical preparation, preoperative planning with the special planning software, drilling of the middle ear access, intraoperative imaging to confirm the trajectory, milling of the inner ear access, insertion of the electrode array, and implant management. The steps that require special attention are discussed. As an example, the postoperative outcome of robotic cochlear implantation in a patient with advanced otosclerosis is presented. Finally, the procedure is discussed in the context of the authors' experience.


Assuntos
Implante Coclear , Orelha Interna , Procedimentos Cirúrgicos Robóticos , Robótica , Cóclea/cirurgia , Implante Coclear/métodos , Orelha Interna/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...